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Abstract

The Mackey Lie algebra g[M consists of infinite matrices, each column and row of
which are finite. The category ']I‘;M is an abelian tensor category of representations

over the Lie algebra gI™, closed under taking submodules, and it is the minimal such
category containing the natural gi™-module V' and its algebraic dual V*. The main
object of our study are the socle filtrations of injective hulls of simple modules in
']I‘;M.These filtrations are known to be finite and exhaustive. Moreover, the simple
modules of ’]I‘i[ u are parametrized by three partitions A, u, v, which suggests a combi-
natorial approach. [CP18] gives a combinatorial formula for the multiplicities of simple
constituents of the above injective hulls. Based on this formula we prove two results.
Let - indicate partition conjugation. Our first result states that the socle filtration of
the injective object I ,, . coincides with the socle filtration of the object Iy/ /. up to
partition conjugation. Our second result claims that the length of the socle filtration
of I, equals |u| + 1 where | - | stands for the degree of a partition.
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1 Prerequisites

In this section we recall the definitions of some important concepts that are used through-
out the paper.

The definitions of a Lie algebra and a module over Lie algebra are standard and one
can find them for example in the classical book [Huml].

Definition 1 (Tensor or monoidal category according to [Wik18]). A monoidal category
is a category C' equipped with a monoidal structure which consists of:

e q bifunctor ® : C' x C' — C called tensor product,
e an object I, called the identity object or the unit object,
o three natural transformations which correspond to certain coherence conditions:

— associativity of tensor product: for objects A, B,C there is a natural isomor-
phism aapc: (AR B)®C=A® (B®C) called associator.

— I is the left and right identity of the tensor product: there are two natural
isomorphisms A and p called left and right unitor. The components of X\ and p
are Ap: ITQAZAand py: AR = A.

In addition it is assumed that:

e the following pentagon diagram commutes for all A, B,C, D in C

Q 1 (e}
(A®B)®C)® D254 0 (Be C) ® D'2225PAw (B® C) ® D)
lOCA@)B,C,D l1A®CVB,O,D
(A® B)® (C® D) - » A® (B® (C @ D))

e the following triangle diagram commutes for all A, B in C

QA LB

(AI)® B » A® (I ® B)
pA®lp
\ AAB
A®B

Let us recall some concepts of category theory. A zero object of a category C is an
object with precisely one map to and from each object. We denote a zero object as O.

Given a pair of objects A and B in a category C, we say that the object P is a product
of A and B if there exist maps P 25 A and P 2% B such that for any pair of maps
X — A and X — B there is a unique X — P that the following diagram commutes:

A

P

/1N

NUJT“U

Diagram



Sum is dual to product. In other words, for given objects A, B we say that S is their
sum if there exist maps A —+ S and B —2 S such that for every pair of maps A — X and
B — X there is a unique map S — X that the diagram dual to Diagram 1 commutes.

For two maps A % B and A % B we say that the map K — A is a difference kernel
of z and y if

e K 5ASB=K—A%B,

e for all X — A such that K - A % B =K — A% B there is a unique K — X
such that the following diagram commutes:

A difference cokernel is the notion dual to a difference kernel.
Suppose C has a zero object. Then we define the zero map A % B to be the unique
map A — O — B. The kernel of A 5 B is defined as a difference kernel of A % B and

A% B. The cokernel of A % B is defined as a difference cokernel of A % B and A % B.

We say that a morphism f : B — C is a monomorphism if, for any given morphisms
g1,92 : A — B, the equality f o g; = f o go implies g1 = go. We say that a morphism
f A — B is an epimorphism if, for any given morphisms ¢1,¢g2 : B — C, the equality
gr1of =gzo f implies g1 = go.

Definition 2 (Abelian category according to [Fre64]). A category C' is abelian if
e C has a zero object,
o for every pair of objects there is a product and a sum,
e cvery morphism has a kernel and a cokernel,

e cvery monomorphism is a kernel of a morphism and every epimorphism is a cokernel
of a morphism.

Definition 3 (Lie algebra gl(oc)). We define the Lie algebra gl(co) as the matriz Lie
algebra which consists of all infinite matrices {a; ;}: 1,7 € N over C that contain only
finitely many nonzero entries.

Definition 4 (Injective object). An object Q in a category C' is said to be injective if for
every monomorphism f : X =Y and every morphism g : X — @Q there exists a morphism
h:Y — @ extending g to 'Y, i.e. such that ho f = g.

X,y

lg ///
K h

Q



Definition 5 (Socle). For a module M we define the socle of M as the sum of all its
simple submodules. We denote the socle of M as socM .

A module is semisimple if it coincides with its socle. An important tool to study
nonsemisimple modules is the socle filtration.

Definition 6 (Socle filtration). We define soc! M iteratively as soc® M = 0, soc' M =
socM and soc’ M := ;! (soc(M/soc'=* M) where m; is the projection from M to M/soc' M.
As a result we obtain the socle filtration of M :

0C soc'M C soc?M C...C M
The i-th level of the socle filtration of M is defined as soc'M := soc' M /soc* =1 M.

Definition 7 (Partition). A partition A of nonnegative integer n is a collection A = (A >
Ao > -+ > A > 0) where all \; are positive integers and ), \j = n.

We represent partitions by Young diagrams.

Definition 8 (Young diagram). The Young diagram T of a partition a = (ay, ..., an) is a
table whose i-th row contains a; cells.

Young diagram T for a = (3,3,1)

For two partitions a = (a1, ...,an), 3 = (b1, ...,by) such that a; > b; Vi, we define the
skew Young diagram of shape o, 8 as the set theoretic difference of Young diagrams of «
and (3.

Skew Young diagram T' of shape o = (4,3,2),8 = (2,1)

Definition 9 (Partition conjugation). For a partition o we say that the partition o' is
conjugate to « if the Young diagram of o coincides with the transposed Young diagram of
o. For a partition o we denote its conjugate by .

Young diagrams for o = (3,3,1) and o/ = (3,2,2)

Definition 10 (Partition concatenation). For partitions o = (a1, ...,an), 5 = (b1, ..., by)
we define their concatenation as a+ = (a1, ..., ap, b1, ..., by).



Definition 11 (Skew Young tableau). For a skew Young diagram T we define a skew
Young tableau T by assigning a positive integer to every cell of T. We name this integer
the filling number of the cell. We say that a skew Young tableau is semistandard if the
filling numbers do not decrease along each row and increase along each column.

1[1]
12
213

A semistandard skew Young tableau of shape o = (4,3,2),5 = (2,1)

Definition 12 (Lattice word). We say that a sequence a1, as, ..., a, of positive integers is
a lattice word if for any m < n any number i occurs in the sequence ay,as, ...,y at least
as often as the number i + 1.

Definition 13 (Littlewood-Richardson tableau). Fiz three partitions «, 5 = (b1, ...,by),".
We say that T is a Littlewood-Richardson tableau for a, 3, if the following holds:

o T is a semistandard skew Young tableauz of shape a, .
o T has exactly b; entries that are equal to 1.

o The sequence obtained by concatenating the filling numbers of the reversed rows of
T from top to bottom is a lattice word.

We define the Littlewood-Richardson coefficient N;Y 5 aS the number of different Littlewood-
Richardson tableaux for partitions «, 3,.

1[1]
12
213

A Littlewood-Richardson tableau for o = (2,1),5 = (3,2,1),7 = (4,3, 2)




2 Background

This section provides some background concerning the objects which we are investigating
and presents a number of statements motivating our research.

The paper [PS14] introduces a class of infinite-dimensional matrix Lie algebras g™
called Mackey Lie algebras, which consist of infinite matrices over C with the property
that every row and every column contains only finitely many nonzero elements. Note that
this does not necessarily mean that every matrix has finitely many nonzero entries.

Consider two modules V and V, over the Lie algebra gl™: they consist respectively
of all infinite finitary ' columns and all infinite finitary rows of gi™. The action of g™
on V is given by g-¢ = ge for g € gi™, ¢ € V, and the action of gl™ on V, is given by
g-r = —rg for r € V,. It is easy to see that the modules V' and V, are simple. This follows
from the observation that for any given nonzero finitary column (respectively row) ¢ and
every other finitary column (respectively row) ¢ there is g € g™ that maps ¢ to c.

The third module we consider is V* - the algebraic dual space of V (the space of
homomorphisms from V' to C). This module is not simple as V is a submodule of V*.
The latter holds because the action of gl™ on V* is given by the same formula as for V,:
g-r = —rg, and V, contains only finitary rows while V* contains all rows. In addition Vi
is the only proper nonzero submodule of V*. This follows from the following two facts:

e V*/V, is a simple gi™-module (see [CP18)).

e The exact sequence 0 — Vi, — V* — V*/V, — 0 does not split as the subalgebra
gl(c0) of g™ maps V* to V, when acting on V*, while the space of gl(co)-invariants
in V* equals zero.

Consequently socV* = V.
Now we introduce the category T;’[M. Its objects are gl™-modules isomorphic to sub-

quotients of finite direct sums of the form & V& @ (V*)®™ @ (V,)®P for n,m,p € N.

n,m,p
The morphisms of TE‘[  are morphisms of the gl™-modules. The category TE‘[ 1S a tensor
category with respect to the usual tensor product ® and it is the minimal abelian tensor
category which is closed under taking submodules and contains V' and V*.

It is important to determine what are the simple modules in ']I’;’[M. We define (+)y to
be the Schur functor (see for example [Ful04]) associated with a partition A\. From [DCPS]
we know that V, ® (V4), is indecomposable and has a simple socle, so this justifies the
definition of the following simple module: V,,, := soc(V, ® (V),). Moreover by [CP18] all
simple objects in ']I‘g[M are (up to isomorphism) tensor products Vi ., := (V*/Vi)x @ Vuu
and they are mutually nonisomorphic for different ordered triples of partitions (A, p, ).
This means that we can parametrize all simple objects by three partitions.

It is known that every indecomposable injective object of ’]I‘g[M is isomorphic to a
direct summand of (V*/V,)®™ @ (V*)®" @ (V)®P for fixed m,n,p. More precisely, it is a
result in [CP18] that indecomposable injectives in TE[M are up to isomorphism I, , :=

(V¥/Vor@ (V) @ V,.

! An infinite sequence is finitary if it has finitely many nonzero entries.



The study of injective objects is crucial for understanding the structure of the category
’]Tﬁ[M. We are going to investigate the socle filtrations of the objects I , ,. Note that the

socle filtration of a general gl™-module may be infinite or it may not be exhaustive in the
sense that the union of soc’ may not be equal to M. However, the socle filtration of I , ,

is finite and exhaustive, and it turns out to be a powerful instrument for understanding

TS
g[]M .
The formula for the explicit computation of soc®(I Apuv) 1 given by

soc ()~ D B P N NN NE V60 (1)

I+r=k—1|a|=l|é|=r {,7,¢,0

where Ng, s is the Littlewood-Richardson coefficient and V¢ - 4 is the corresponding simple
object of ']I‘z[M [CP18]. The socle filtration is finite so it makes sense to define the Loewy
length of I ,,, as the length of the socle filtration of I ,,,. And finally it is convenient to
denote the multiplicity of V,, g in the k-th layer of socle filtration of the object I , , as
[soc® (I ) * Va5,4]

The somewhat obscure formula (1) is the entry point of our research. The idea is
to study the algebraic properties of ']I‘g[M from a combinatorial point of view. The main
difficulty for understanding the formula is the summation over all possible partitions.
Therefore, as a first step we wrote a computer program to calculate the layers of the socle
filtration. The program goes through all partitions until the corresponding Littlewood-
Richardson coefficients equal to 0, something a human can hardly do. It produced tables
of socle filtrations which turned out to be very helpful. First, these tables confirmed our
conjecture stating that by conjugating all three partitions of I ,, every object V¢, 4 in
every layer of the socle filtration of I ., gets conjugated to Vi 4. This conjecture
was proven as Theorem 1. In addition, the tables helped us see the pattern for the length
of socle filtrations and eventually to prove Theorem 2.



3 Properties of Littlewood-Richardson coefficients

This section contains several properties of Littlewood-Richardson coefficients that are
essential for the proof of main results.

Lemma 1. Let Ngﬁ be a Littlewood-Richardson coefficient for partitions o, 8,~v. Then
N, 3 # 0 implies |y = |a] + |B].

Proof. From the definition of Littlewood-Richardson tableau for «, 3,y it follows that the
number of its cells is |y| — |a| and that the tableau contains |3| entries. This means that
if such a tableau exists then || — |a| = |5], i.e. || = |a| + |8]. O

Lemma 2. Suppose o, 3,7 are partitions and o', 3,7 are their conjugates. Then

v A
Ny =Ny g-

The proof of this fact see for example in [HS92].
Definition 14 (Standard filling). Consider a skew Young diagram D for partitions ., 3.

We say that a Young tableau T is the standard filling of D if D and T have the same
shape and the filling number in every cell equals the number of the cell in its column.

1[1]

1
2]2[2
3]

The standard filling of the skew Young diagram for a = (5,3), 5 = (5,4, 1)

Now, let us prove several useful properties of standard fillings.

Proposition 1. The standard filling of a skew Young diagram is always a semistandard
skew Young tableau, i.e. the entries weakly increase along each row and strictly increase
down each column.

Proof. Let T be the skew Young tableau obtained as the standard filling of a skew Young
diagram D. First, we notice that the filling numbers strictly increase down the columns
by construction.

Now suppose there is a row ¢ and two cells D; j, D; ;1 with filling numbers T ;, T; j+1
satisfying T; ; > T j11. By the definition of standard filling this means that the cell D; ;
has more cells above it than D; ;1. However this is impossible by the construction of
skew Young diagram. This contradiction shows that 7T is indeed a semistandard Young
tableau. O

Proposition 2. The sequence obtained by concatenating the reversed rows of a standard
filling of a skew Young diagram D is a lattice word.



Proof. In this proof we say that a prefix of a sequence a1, as, ..., a, is a sequence a1, ag, ..., am,
for some m < n.

We need to show that, for the sequence of concatenated reversed rows A every prefix
contains the number i at least as many times as the number 7 + 1. But this is an easy
consequence of the fact that the filling number of the cell D; ; is preceded in A by the
filling numbers of all cells above D; ;. Then, by the construction of standard filling, the
number ¢+ 1 appears in any prefix of A at most as many times as the number ¢. Therefore
the sequence obtained by concatenating the reversed rows of a standard filling is a lattice
word. O

Keeping the properties of a standard filling in mind, we get back to the properties of
Littlewood-Richardson coefficients.

Lemma 3. Suppose o, 8 are two partitions. Then Nj;ﬁ # 0.

Proof. Recall that a Littlewood-Richardson coefficient is defined as the number of Littlewood-
Richardson tableaux of a certain kind, and consider the skew Young diagram D of shape
a+ 3, a. Let us prove that the standard filling T of D is a Littlewood-Richardson tableau,
thus proving that at least one such tableau exists. Then NS’EB > 1 will follow.

Let 8 = (by,ba,...,b,). It suffices to show three things: T is a semistandard skew
Young tableau, the sequence obtained by concatenating its reversed rows is a lattice word,
and the tableau has exactly b; entries that are equal to 1.

The first two statements were proved as Propositions 1 and 2, so we only need to show
that the filling number i is assigned to b; cells of D. Consider the Young diagram of the
partition a+ 3, each row of which comes from « or 8. Next consider the row corresponding
to the filling number b; (it arises from () and fill every box in it with numbers i. Leave
the rows corresponding to o empty. Denote this tableau as T".

Now we need to show that the filling numbers in 7" are in one to one correspondence
with the filling numbers in T'. By the definition of skew Young diagram, every column of
T contains as many numbers as the same column of 77. But the entries in any column
of T and T” take all values from 1 to m for a certain integer m. These two observations
imply that the numbers appearing in T are the same as the numbers in 7”. Since the
number 7 is written in exactly b; cells of T”, the same applies for T.

1/1/1]1]1

212122

13
Tableau T” for o = (5,3),8 = (5,4,1)

Thus it was shown that there is at least one tableau for «, 8, o + 8, which concludes
the proof. 0

10



4 Symmetry of socle filtration with respect to partition con-
jugation

Theorem 1. Let Mk(bww) be isomorphic to @ m;Ve, ., Then M’“(L\/,#/J/) 18 180-
morphic to @mivcl(m(@;. In other words, [@k(IAMW) Vo = [sfock(_f,\/’ww/) Vo g ]

Proof. As we stated in Section 2:

soc” (D) @ @EB @N)\Ca o8 75N¢7,6VC,%¢>

I+r=k—1|a|=1|8|=r (,7,0,8

where the summation is taken over all possible partitions.

Fix ¢ and set m :=m;,( := §,7 = 7, ¢ = ¢;. Let m/ be the multiplicity of Vi 4
in Mk(fx,u',u')- We show now that m’' > m.

Formula (1) implies that there exists a set (aj,d;, 5;) such that |a;| + [0;] = k — 1 for
all j and

¢ NH
ZNAQJ aj,ﬁj N¢5 =m.

Then Lemma 2 shows that
Z N
)\/ / ,5/ / 5/ ¢/ / =1m.

Therefore m’ > m.

For every partition « the equality (o/)" = « holds, so we can apply the same argument
to @k(b\/,#/’w) and conclude that [@k(l)\%,,) Vasnl 2 [Mk(l,\/7u/7,,/) : Vg 4]- These
two inequalities prove the theorem. ]

Conjecture 1. Theorem 1 can be considered as combinatorial evidence for the following
conjecture: there exists a tensor functor of autoequivalence (-) : T;’[M — T;’[M such that

(Vo) = Vi pr

This conjecture is inspired by Serganova’s functor of tensor autoequivalence on the
category Ty, see [Serld]. Tt is very likely that the functor of Conjecture 1 can be
constructed in a way similar to Serganova’s functor by passing to a Lie superalgebra
analogue of the Mackey Lie algebra gi™.

11



5 Length of socle filtration

Proposition 8. If V., ¢ C soc (I uy) then || = [ — k+ 1.

Proof. From formula (1) for soc*(Iy ,,) we conclude that if soc*(I} ) is not zero then
for every V¢, 4 there is a set of triples (8,4, «) such that Nf # 0 and N“ # 0. Then
by Lemma 1 it follows that |3| = |y| + |d| and |u| = |a| + |8] = |a] + || + \5| But || and
|0] satisfy |a| + |0| =k — 1, so |u| =k — 1+ |v], or equivalently |y| = |u| — k + 1. O

Now with the help of Proposition 3 we can prove the following theorem:
Theorem 2. The Loewy length of Iy, is equal to |pu| + 1.

Proof. Let us show that ﬂ'“'“(l)\’w) contains Vy, @), as a submodule, and is therefore
nonzero. It suffices to prove that there are «, 9, 3 such that

NYENE (NG SN s # 0

o877 (0),6
_ — — — TN ()
?}rlld ol + (8] = |pl. Set a:=p, 6 :=(0), 8 := (@). Then N/, = Ny ) = Ny ) = 1 and
us
Mppn (@) v _ At
N Ny Nwy.o No.w) = Nx
is nonzero by Lemma 3.
Now we know that @'“'“(I Auv) 18 nonzero, and according to Proposition 3,
ﬂlul—’a(I)\,u,u) =0,
which finishes the proof of the theorem. O

12



6 Appendix

This appendix contains the socle filtration tables for indecomposable injective objects.
Socle filtrations of I, g are sorted by |a| 4+ |8| + |y|. The i-th level of a table, counted
from bottom to top, represents soc” (I Auv)- The tables were generated with a program

based on formula (1).
ol + 18]+ I =0

Voo |

ol + 8]+ =1

Vo
Voo } 4

o + 18] + |yl = 2:

Moo |
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